Fuzzy Stability of Quadratic Functional Equations
نویسندگان
چکیده
Katsaras 1 defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view 2–4 . In particular, Bag and Samanta 5 , following Cheng and Mordeson 6 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 7 . They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces 8 . We use the definition of fuzzy normed spaces given in 5, 9, 10 to investigate a fuzzy version of the generalized Hyers-Ulam stability for the quadratic functional equations
منابع مشابه
Asymptotic aspect of quadratic functional equations and super stability of higher derivations in multi-fuzzy normed spaces
In this paper, we introduce the notion of multi-fuzzy normed spaces and establish an asymptotic behavior of the quadratic functional equations in the setup of such spaces. We then investigate the superstability of strongly higher derivations in the framework of multi-fuzzy Banach algebras
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملStability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملOn the stability of fuzzy set-valued functional equations
Abstract: We introduce some fuzzy set-valued functional equations, i.e. the generalized Cauchy type (in n variables), the Quadratic type, the Quadratic-Jensen type, the Cubic type and the Cubic-Jensen type fuzzy set-valued functional equations and discuss the Hyers-Ulam-Rassias stability of the above said functional equations. These results can be regarded as an important extension of stability...
متن کامل